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Abstract Reproductive division of labor in social insects is
accompanied by the reliable communication of individual
fertility status. A central question is whether there exists a
general mechanism underlying this communication system
across species. The best way to produce reliable information is
through physiological markers tightly associated with repro-
ductive status. Cuticular hydrocarbons exhibit this link to
individual fertility in several species of ants, bees, and wasps,
and we present the first evidence for such a system in a non-
Hymenopteran eusocial species. In the termite Zootermopsis
nevadensis, we identified four polyunsaturated alkenes,
which only occur in significant amounts on reproductives
that are actively producing gametes. These compounds are
either absent or only occur in small amounts in soldiers,
worker-like larvae, and secondary reproductives with inac-
tive gonads. In contrast to Hymenopteran social insects, both
sexes express the reproductive peaks. The reproductive-
specific hydrocarbons may promote tending behavior by
worker-like larvae or act as a primer pheromone, inhibiting
the reproductive development of immature conspecifics.
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Introduction

Several insect groups have independently evolved eusociality
(Wilson 1971; Danforth 2002), exhibiting a reproductive
division of labor in which one or just a few individuals
within a colony are reproductively active and the remaining
members are functionally sterile (Wilson 1971; Gadagkar
1994; Sherman et al. 1995). The organizational structure and
stability of eusocial colonies depend on communication
between reproductive and non-reproductive individuals,
often through pheromones (Keller and Nonacs 1993), to
maintain the central division of labor. Elucidating the
fundamental elements of such communication system will
greatly enhance our understanding of the function and
evolution of these insect societies.

Reproductive-specific pheromones can have several
functions within the colony, serving as behavioral activa-
tors and physiological primers. As activators, they can
elicit tending behavior in workers, ensuring that the
reproductive individuals are groomed and fed and that
their eggs are collected and cared for. They can also elicit
aggressive policing behaviors in non-reproductives direct-
ed toward individuals producing a competing reproductive
signal within a colony. As primers, pheromones have the
potential to suppress nestmate fertility. The current model
suggests that functional reproductives produce a chemical
signature that identifies their level of fertility (Heinze
2004; Monnin 2006; Le Conte and Hefetz 2008; Peeters
and Liebig 2009). When perceived by target individuals,
these signals affect the activity of mechanisms controlling
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reproductive development and gametogenesis, possibly by
influencing the endocrine system (Hartfelder and Emlen
2005; Grozinger and Robinson 2007). In the ultimate sense,
these compounds may promote self-regulated inhibition
simply by allowing conspecifics to recognize the proximity
of functional reproductives (Keller and Nonacs 1993).

For many eusocial insects, there is mounting evidence that
cuticular hydrocarbons may be the primary means of
conveying reproductive-specific information. Only in the
honey bee, Apis mellifera, and the fire ant, Solenopsis
invicta, is there clear evidence of non-hydrocarbon pher-
omones being used in this capacity (Vargo 1997; Hoover et
al. 2003; Slessor et al. 1988). Although the original function
of the cuticular lipid layer of insects is to protect against
pathogens and water loss, hydrocarbons also function as
chemical messengers between and within species (Lahav
et al. 1999; Thomas et al. 1999; Wagner et al. 2000; Akino et
al. 2004; Howard and Blomquist 2005; Dani 2006; Martin et
al. 2008). Queen-specific hydrocarbon signatures have been
identified in ants (e.g., Monnin et al. 1998; Peeters et al.
1999; Liebig et al. 2000; Cuvillier-Hot et al. 2001;
Hannonen et al. 2002; Heinze et al. 2002; Tentschert et al.
2002; Dietemann et al. 2003; de Biseau et al. 2004; Smith et
al. 2008), a bee (Ayasse et al. 1995), and wasps (e.g.,
Bonavita-Cougourdan et al. 1991; Sledge et al. 2001) with
up to 60% of the hydrocarbon profile specific to highly
reproductive queens (de Biseau et al. 2004; Endler et al.
2004, 2006). In the ant Aphaenogaster cockerelli, it has been
experimentally shown that a n-alkane reveals the reproduc-
tive status of workers (Smith et al. 2009). Similar caste
encoding has also been found in the hydrocarbon profiles of
eggs from several ants (Monnin and Peeters 1997; D'Ettorre
et al. 2004; Endler et al. 2004, 2006; Dietemann et al. 2005),
possibly regulating differential egg destruction and worker
reproduction (Endler et al. 2004).

The broad occurrence of this connection between
hydrocarbons and the reproductive division of labor
within the social Hymenoptera suggests that it may also
occur in other non-hymenopteran social insects. To
determine if that was the case, we examined the
primitive dampwood termite Zootermopsis nevadensis
(Order Isoptera) for hydrocarbon correlates of reproductive
status. In addition to having a very different evolutionary
origin, termites also provide an opportunity to examine
whether reproductive-specific information is also sex
specific. Both male and female reproductives occur in
termite colonies, whereas in social Hymenoptera, the
reproductive males do not return to the nest after leaving
to mate. In Z. nevadensis and its sister species Zootermopsis
angusticollis, there is evidence that functional reproductives
are able to suppress the reproductive development and
activity of their nestmates in a sex-specific manner (Heath
1903; Castle 1934; Light and Weesner 1951). This requires

that either they produce a sex-specific inhibitory pheromone
or a sex-independent pheromone that is paired with a
pheromone that indicates sex, e.g., from sternal glands
(Pasteels 1972). Although pheromonal inhibition has been
repeatedly implicated in the reproductive division of labor
within termite colonies (Castle 1934; Light and Weesner
1951; Hewitt et al. 1972; Lüscher 1972; Greenberg and
Stuart 1979; Lefeuve and Bordereau 1984; Watson and
Abbey 1985; Vieau 1990), research on the possible
suppressive influence of volatile compounds has failed to
demonstrate their efficacy or even their existence in termites.
However, recent work on termite hydrocarbons has shown
that there are caste- and species-specific differences (Clement
and Bagneres 1998; Sevala et al. 2000), suggesting that these
compounds might also encode other individual-specific
information such as information about fertility affecting the
behavior and development of nestmates. In the termite
Cryptotermes secundus, hydrocarbon differences between
neotenic queens and workers have been found (Weil et al.
2009). Whether these differences are due to caste-specific
changes or are caused by differences in fertility is unknown,
but the latter scenario is more likely, considering the
frequency with which it has been found in hymenopteran
species (Peeters and Liebig 2009).

In this study, we compared the hydrocarbon profiles of
reproductively active males and females with those of non-
reproductive individuals, the worker-like larvae and soldiers,
in Z. nevadensis. We identified alkadienes and alkatrienes
specific to the hydrocarbon profiles of all reproductive
individuals, which may contribute to colony reproductive
dynamics. This is the first demonstration of a linkage
between fertility and a potential signaling mechanism in a
termite.

Materials and methods

Experimental animals

Stock colonies of Z. nevadensis were collected in June of
2006, August 2007, and July 2008 from the Del Monte
Forest in Pebble Beach, CA, USA. Colonies were removed
from their natal nest and placed in a more accessible nest
consisting of several pre-cavitated layers of moistened
Douglas fir sheets bolted together. These nests were kept
in closed plastic boxes at 25°C and were regularly sprayed
with water to ensure high humidity. The termites were
identified as the subspecies nuttingi according to location
and their subspecies-specific hydrocarbon pattern (Haverty
et al. 1988; Haverty and Thorne 1989).

Except for one pair of physogastric primary reproduc-
tives, all of these colonies were headed by multiple
neotenic replacement reproductives. These individuals
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were identified by cuticles that were much more darkly
pigmented than those of their nestmates’ (Heath 1903;
Castle 1934). Putative reproductive and non-reproductive
individuals were periodically sampled from 26 colonies
for determination of hydrocarbon profiles (females: sec-
ondary reproductives—14 from 10 colonies, worker-like
larvae—nine from eight colonies, soldiers—19 from 12
colonies; males: secondary reproductives—12 from nine
colonies, worker-like larvae—10 from nine colonies, sol-
diers—12 from eight colonies). Individual reproductive
status was verified by dissection under a stereomicroscope
(Leica MZ125). Females were examined for the presence or
absence of distinct yellow bodies (follicular remnants) as an
indicator of recent ovipositional activity. Male testis diameter,
an indicator of sperm production capacity (Brent and
Traniello 2001a), was measured using an ocular micrometer.

Chemical extraction and gas chromatography for profile
determination

The hydrocarbon profiles of male and female workers and
reproductives were obtained by hexane extraction. The
whole insect was shaken in a Teflon capped borosilicate
glass vial containing 200 μl hexane (Sigma-Aldrich, St.
Louis, MO, USA) for 2 min. These hexane extracts were
dried with high-purity nitrogen, then resuspended with
30 μl hexane. One microliter aliquots of the hexane extracts
were injected into an Agilent 6890N GC (Agilent, Santa
Clara, CA, USA) coupled with an Agilent 5975 mass
selective detector, operated in the electron impact ionization
mode. The GC was operated in splitless injection mode
with helium as carrier gas at 1 ml/min flow rate. It was
fitted with a 30 m×0.25 mm (ID) ×0.1 μm DB-1MS non-
polar column (Agilent). The oven temperature was
programmed to rise from 60°C to 200°C at 40°C min−1

after an initial delay of 2 min, including a splitless time of
0.5 min. Subsequently, the temperature rose from 200°C to
320°C at 5°C min−1. Injector temperature was 260°C, MS
quad 150°C, MS source 230°C, and transfer line 300°C.

Statistical analysis

For the comparison of peak areas and to exclude com-
pounds that are at the threshold of detection by gas
chromatography, we included only peaks that are present
in at least 50% of members of the following six groups:
reproductive females, reproductive males, non-reproductive
females, non-reproductive males, and female and male
soldiers. These peaks were standardized to 100% and
relative peak areas refer to this set of compounds. We
compared the relative amount of the four compounds that
were typical for reproductives between the different female
castes using a Kruskal–Wallis test with subsequent pairwise

comparison using Mann–Whitney U test. Although darker
coloration of reproductives is already a criterion for their
identification, we used the presence of yellow bodies as an
indication of long-term reproduction for the classification
of secondary reproductives versus workers. Not all second-
ary reproductives are active gamete producers, so verifica-
tion of fertility status is crucial. Soldier identification is
clear due to their distinct head morphology. For male
reproductives, we used a product–moment correlation
between compound amounts and testis development (STA-
TISTICA 7.1, Statsoft). Sex-specific differences and quan-
titative differences between reproductives, workers, and
soldiers were analyzed using non-parametric multidimen-
sional scaling (PRIMER 6.0). For the analysis of quantita-
tive differences, we excluded the four peaks typical for
reproductives and reset the remaining 10 peaks again to
100%. We used Euclidean distances in the analysis.

Chemical identification of reproductive compounds

Reproductive individuals possessing the reproductive-
specific hydrocarbons were freeze-killed, and their
cuticular lipids were extracted in 200 µl hexane (Sigma-
Aldrich) for 1–2 min. The extract was fractionated by
flash column chromatography over 200 mg of 10% silver-
nitrate silica gel (70–230 mesh; Fisher Scientific, Fair
Lawn, NJ, USA) and eluted with 2 ml each of hexane,
ether, ethyl acetate, and methanol (Sigma-Aldrich). Each
fraction was tested for the presence of the reproductive-
specific compounds by GC-MS analysis (see below). The
fraction containing the compounds was then subjected to
dimethyl disulfide (DMDS; Alfa Aesar, Ward Hill, MA,
USA) derivatization to locate double-bond positions in
alkadienes and alkatrienes. The fraction was dried under
N2 in a 0.3-ml conical reaction vial to ∼10 µl. Ten
microliters of 5% iodine (Alfa Aesar) in diethyl ether and
1 µl of DMDS were added and left at room temperature for
24 h. A 5% aqueous solution of sodium thiosulfate (Alfa
Aesar) was added to the reaction vial until the solution
became clear, and then the organic phase was transferred
to a new vial. The aqueous phase was washed with
hexane twice, and organic phases were pooled and
analyzed by GC-MS. For alkatrienes, derivatization by
DMDS was not sufficient for determining the position of
the double bonds, and ethanethiol (Fisher Scientific)
derivatization was used for further indication. A fraction
containing the reproductive-specific compounds was
similarly dried under N2 in a 0.3-ml conical reaction vial
to ∼25 µl. Twenty-five microliters of 5% iodine in diethyl
ether and 40 µl of ethanethiol were added and incubated in
a 50ºC bead bath for 48 h. A minimum amount of 5%
aqueous solution of sodium thiosulfate was then added to
the reaction vial, and the organic phase was transferred to
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a new vial. The aqueous phase was washed with hexane
twice, and the organic phases were pooled and analyzed
by GC-MS, as described above. The oven temperature was
programmed to rise from 60°C to 250°C at 20°C min−1

after an initial delay of 2 min and from 250°C to 320°C at
5°C min−1 and held at 320°C for 15 min. Injector
temperature was 260°C, MS quad 150°C, MS source
230°C, and transfer line 250°C.

Results

Chemical identification

In Z. nevadensis, both female (Fig. 1a) and male (Fig. 1c)
reproductives have cuticular hydrocarbon profiles with four
polyunsaturated alkenes that are not found in significant
amounts in worker-like larvae or soldiers (Figs. 1b, d and 2).
Compound 1 had fragmentation characteristics and a
retention index identical to an authentic 6,9-nonacosadiene
(courtesy of Thomas Schmidt), both in its natural and its
DMDS-derivatized state. The identification of compounds
2–4 is based solely on fragmentation patterns of natural and
derivatized forms, and final confirmation awaits comparison
with authentic compounds. They are tentatively identified as
6,9-hentriacontane (2), 6,9,17-dotriacontane (3), and 6,9,17-
tritriacontane (4).

Compounds 5 to 14 were identified by their typical
fragmentation patterns and in comparison with alkane
standards and with previously published data (Haverty et
al. 1988). We found one difference in the identification.
Compound 9 was consistently assigned to x,y-tricosadiene
with the typical fragmentation pattern and a molecular ion

mass of 320. Haverty et al. (1988) reported 2- or 4-
methyldocosane at this position.

Cuticular hydrocarbon profiles and reproductive status

In females, expression of the reproductive-specific hydro-
carbons at high concentrations is linked with the appear-
ance of yellow bodies (Fig. 2). These residual tissues are
reliable indicators of recent reproductive activity, and their
presence in the ovaries is strongly associated with the
production of vitellogenic oocytes. Six out of seven females
with yellow bodies also had vitellogenic oocytes (median
21, range 0 to 42), while the size of the yellow bodies in the
seventh female indicated that she had recently stopped
laying eggs. Neotenic females without visible yellow
bodies also lacked vitellogenic oocytes and expressed
significantly less of the reproductive-specific hydrocarbons.

The reproductive-specific hydrocarbons accounted for
16% to 38% (median 25%) of the total amount of
hydrocarbons in the profiles of all reproductives. The
profile of workers and soldiers averaged close to 0% for
these compounds. The difference in peak area between the
four groups was statistically significant (Fig. 2, N=42,
Kruskal–Wallis test, H=24.9, p=0.0001). In male repro-
ductives, the relative quantities of these compounds are
correlated with testis volume (Fig. 3; N=12, product–
moment correlation, r=0.86, p=0.0003, r2=0.74), which
has been found to be a reliable indicator of sperm
production capacity (Brent and Traniello 2001a). Soldier
testis development was at the lowest end of the range.

The hydrocarbon profiles did not provide sex-specific
information about individuals from each of these three
castes. Multidimensional scaling, using profiles that did
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(Fig. 4a) or did not (Fig. 4b) include reproductive-specific
peaks, failed to separate females and males from each other.

Discussion

The comparison of the cuticular hydrocarbon profiles of
reproductive individuals, non-reproductive worker-like
larvae, and soldiers in the dampwood termite Z. neva-
densis demonstrated the presence of reproductive-specific
compounds in a non-Hymenopteran social insect. Four
polyunsaturated alkenes occur in the profiles of reproduc-
tive males and females in high concentrations, while

worker-like larvae and soldiers of both sexes either lack
these compounds or express them in minor amounts. In
fact, the relative proportions of these polyunsaturated
alkenes correlate significantly with the extent of gonad
development, indicating that the expression may be scaled
with the relative fertility of these individuals.

The correlation of hydrocarbon profiles with testis
development in males and their association with the yellow
bodies in females strongly suggest that these profiles are
used to communicate reproductive status to other colony
members, similar to many Hymenopteran social insects
(Monnin 2006; Le Conte and Hefetz 2008; Peeters and
Liebig 2009). If the expression pattern does signal to
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nestmates an individual’s relative fertility, it has the
potential to attract tending behavior and to be used as a
regulatory mechanism for colony reproductive dynamics.

Hydrocarbons are known to be used by many insects for
intra- and interspecific signaling (Howard and Blomquist
2005), and caste- and sex-specific differences have already
been found in other termite species (Pasteels and Bordereau
1998; Uva et al. 2004). Most recently, qualitative differ-
ences in the cuticular hydrocarbon profiles have been found
between neotenic females and workers in the termite
species C. secundus (Weil et al. 2009). Although those
results suggest a linkage between fertility and profile, they
do not provide sufficient physiological evidence to resolve
whether that is the case or whether there is simply a caste-
specific difference in hydrocarbon expression. Neverthe-
less, these findings coupled with our own data suggest that
the correlation between fertility and cuticular hydrocarbon
expression may be a general pattern found in social insects.

The exact functions of the reproductive-specific hydro-
carbons of Z. nevadensis remain to be determined. Two
possible roles are as promoters of tending behaviors or as
inhibitors of gonad development or activity in non-
reproductive nestmates, which are not necessarily mutually
exclusive. Among the eusocial Hymenoptera, there are
several examples of a tending function. In the ant Myrmecia
gulosa, extracts of the hydrocarbon profile of reproductive
queens are more attractive to workers than similar extracts
from non-reproductive workers (Dietemann et al. 2003),
suggesting that they may trigger grooming or feeding. More
fertile queens are tended more frequently in the ants
Leptothorax sp. A and Formica fusca (Ortius and Heinze
1999; Hannonen et al. 2002). In the Formica species, higher
attraction was also associated with differences in their
cuticular hydrocarbon profiles. So far, a similar association
between cuticular hydrocarbon profiles and queen tending
behavior has not been established in termites.

The second proposed function, as an inhibitor of
nestmate reproductive activity, is equally likely. Currently,
there are two proposed mechanisms for how termite
reproductives might inhibit nestmate fertility: direct manip-
ulation through agonistic interactions (Zimmerman 1983)
or indirect inhibition through pheromones (Pickens 1932).
There is little evidence to support the former argument
(Roisin 1994; Korb 2005), and previous experiments with
Zootermopsis give no indication of aggression or direct
physical manipulation (Rosengaus and Traniello 1993;
Brent and Traniello 2001a, b). This suggests pheromonal
regulation in Zootermopsis (Pickens 1932; Castle 1934;
Lüscher 1972), although previous tests for volatile primer
pheromones have been inconclusive. However, it may not
be necessary for pheromones to operate over long distance
to be effective throughout a colony; nestmate inhibition by
contact may also succeed. This is particularly plausible for

species like Zootermopsis and other basal termites, in which
colonies are composed of at most a few thousand members
and are contained in small, discrete nests with high contact
rates. The strongest candidate compounds for such a short-
range recognition function in termites are hydrocarbons
such as we identified on the reproductive males and
females. Potential distribution mechanisms are currently
being explored by the authors.

Although the identified reproductive-specific hydrocar-
bons may play a role in regulating the reproductive develop-
ment of nestmates, they alone are not sufficient to induce the
sex-specific inhibitory effect observed in Zootermopsis (Light
and Weesner 1951). We did not find differences in the
expression of cuticular hydrocarbons beyond those related to
reproduction in any of the types of individuals we
investigated. The lack of divergence between the profiles of
reproductive males and females is also remarkable in that it
indicates a shared physiological basis that lies upstream of
their sex-specific physiology. However, if the fertility-related
hydrocarbons regulate reproduction in a single sex, an
additional sex-specific pheromone, e.g., from sternal glands
(Pasteels, 1972), is required.

It is not surprising that the phylogenetically distant
Hymenoptera and Isoptera show a similar link between
reproductive physiology and cuticular hydrocarbon profiles.
Hydrocarbon expression is a primitive system that is likely to
have been conserved throughout the insects and other
arthropods. Although it may have originally evolved as a
water conservation mechanism (Gibbs 1998), it has acquired
additional communicative functionality. The sensory machin-
ery for hydrocarbon detection is present in solitary insects
and is extensively used for species and mate recognition
(Howard and Blomquist 2005). For some solitary species, the
mate recognition functionality of hydrocarbons appears to
have a physiological basis similar to that of fertility signaling
in social insects. The onset of ovarian activity is correlated
with changes in the cuticular hydrocarbon profiles in house-
flies (Dillwith et al. 1983), burying beetles (Steiger et al.
2007), and spiders (Prouvost et al. 1999), enabling males to
determine which females are ready to mate.

Furthermore, the hydrocarbon profile is quite likely to
convey reliable information about reproductive state, so it
would be evolutionarily favored. Current evidence suggests
that the mechanisms governing hydrocarbon synthesis and
expression share the same endocrine controls as those
regulating reproductive capability. Strong links between
hydrocarbon biosynthesis, reproductive status, and endocrine
activity have already been described for the ant Streblogna-
thus peetersi (Cuvillier-Hot et al. 2004; Brent et al. 2006),
the flies Calliphora vomitoria (Trabalon et al. 1994) and
Musca domestica (Dillwith et al. 1983), and the cockroach
Blattella germanica (Schal et al. 1993, 1994, 1997; Sevala et
al. 1999; Fan et al. 2002; Holbrook et al. 2000). Termites are
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closely related to roaches (Kambhampati 1995) and are
likely to share many of the same regulatory mechanisms. In
Zootermopsis, juvenile hormone titers shift with changing
reproductive status and appear to drive gametogenesis
(Greenberg and Tobe 1985; Brent et al. 2005). Also in these
termites, hydrocarbons are delivered to the cuticle and other
tissues via a lipophorin carrier system (Schal et al. 1998;
Sevala et al. 2000). Termite lipophorins also have a high
affinity for juvenile hormone III (Okot-Kotber and Prestwich
1991a, b). Binding to JH may change the conformation of
the lipophorin, which in turn can change the hydrocarbons it
can transport to the cuticle (Sevala et al. 2000). Because of
this interlinking system of controls, any change in termite
reproductive status would be accompanied by a change in
the hydrocarbon profile, keeping nestmates accurately
informed and able to produce appropriate physiological and
behavioral responses.

Finally, the structural diversity of cuticular hydrocarbons has
most likely served as a preadaptation for communicative
functions. There is tremendous variation across species in the
hydrocarbons expressed and the functions that they have
acquired. Just within the social Hymenoptera, the hydrocarbons
correlated with reproductive status include n-alkanes, alkenes,
and methyl-branched alkanes (Monnin 2006; Liebig unpub-
lished). Variations in the composition of this complex profile,
either via qualitative or quantitative differences, allow a social
insect to simultaneously encode a wide array of information,
including reproductive status and colony membership (Denis
et al. 2006). Cuticular hydrocarbon profiles can also contain
information about morphological and behavioral caste, sex,
and age (Howard and Blomquist 2005).

The adaptability and potential for complex communication
of the hydrocarbon signaling system may have led to the
convergence on this mechanism in the evolution of social
arthropods. If that is the case, we predict that similar usage of
cuticular hydrocarbons will be found throughout the termites.
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